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Abstract

Leaf Area Index (LAI) is an important biophysical variable for characterizing the land surface vegetation. Global LAI product has been routinely
produced from the MODerate resolution Imaging Spectroradiometer (MODIS) aboard the Terra and Aqua satellite platforms. However, the MODIS
standard LAI product is not continuous both spatially and temporally. To fill the gaps and improve the quality, we have developed a data filtering
algorithm. This filter, called the temporal spatial filter (TSF), integrates both spatial and temporal characteristics for different plant functional types.
The spatial gaps are first filled with the multi-year averages of the same day. If the values are missing over all years, the pixel is filled with a new
estimate using the vegetation continuous field—ecosystem curve fitting method. The TSF integrates both the multi-seasonal average trend
(background) and the seasonal observation. We implement this algorithm using the MODIS Collection 4 LAI product over North America.
Comparison of the TSF results with the Savitzky—Golay filter indicates that the TSF performs much better in restoring the spatial and temporal
distribution of seasonal LAI trends. The new LAI product has been validated by comparing with field measurements and the derived LAI maps from
ETM+ data at a broadleaf forest site and an agricultural site. The validation results indicate that the new LAI product agrees better with both the field
measurements and LAI values obtained from the ETM+ than does the MODIS LAI standard product, which usually shows higher LAI values.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Leaf area index (LAI) is being provided by the science team
from observations acquired by the MODerate resolution Imaging
Spectroradiometer (MODIS) instruments aboard NASA’s Terra
and Aqua satellites. However, the current LAI product is spatially
and temporally discontinuous due to cloud cover, seasonal snow
and instrument problems. This limits the application of LAI in
ground surface process simulation, climatic modeling and global
change research. Modelers would want continuous high quality
data that can be used easily. While the QC (quality control) layers
have some value, they need to be explored further in order to
provide the highest quality data.
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To enable these LAI products to be used with their various
kinds of gaps, it is intuitively appealing to use either temporal or
spatial filters. Several mathematical filters have been used to fill
gaps in remotely sensed data, such as simple linear interpolation,
best index slope extraction (Viovy et al., 1992), Fourier wave
adjustment (Sellers et al., 1994), polynomial fitting (Karnieli
et al., 2002), Asymmetric Gaussian filter (Jonsson & Eklundh,
2002), Savitzky—Golay filter (Chen et al., 2004; Savitzky &
Golay, 1964), or piecewise logistic function fitting (Zhang et al.,
2003). These methods have been mainly used to restore the NDVI
(normalized difference vegetation index) profile (Cihlar, 1996;
Sellers et al., 1994), but they can also be used for LAI with some
adjustments.

Spatial filtering using pixel-level or regional ecosystem
statistical data is provided by most commercial image processing
software. Various spatial filters have long been adopted in digital
data processing to remove noise or enhance surface features.
Geostatistical methods, such as co-kriging and stochastic


mailto:hfang@geog.umd.edu
http://dx.doi.org/10.1016/j.rse.2006.07.026

76 H. Fang et al. / Remote Sensing of Environment 112 (2008) 75-93

Table 1

The MODIS LAI quality control (QC) values and algorithms and the TSF algorithm treatments

QC values SCF_QC MODIS LAI algorithms TSF algorithms

(binary, decimal Background Observation

values)
QC<32 000=0 Main (RT) method with the best possible results Good data (not processed)
32<=QC<64 001=1 Main (RT) method with saturation Multi-year average or  Use original MODIS LAI
64<=QC<9%6 010=2 Empirical method used (Main method failed due to geometry problems) VCF-ECF method as observation
96<=QC<128 011=3 Empirical method used (Main method failed due to problems other

than geometry)

QC>=128 100=4 Couldn’t retrieve pixel Temporal filtering

SCF_QC are the binary bits indicating LAI algorithms.

Table 2
Filled values in the standard MODIS LAI Collection 4 product

Filled values Description

255 Not-computed or outside projection
254 Water (Ocean or inland)

253 Barren, very sparsely vegetated
252 Perennial snow or ice on pixel

251 Permanent wetlands, marshes

250 Urban, built-up areas

249 Unclassified

simulation, have been used for mapping vegetation variables
(Dungan, 1998). Berterretche et al. (2005) reviewed several
aspatial and spatial methods and compared reduced major axis,
kriging with an external drift and sequential Gaussian conditional
simulation to develop continuous LAI maps over a boreal forest
study site. Nevertheless, techniques based purely on spatial
methods are very limited because there are usually large regions
that have poor spatial coverage, which cannot readily be filled.
Furthermore, simple spatial filtering of an ecosystem may fail to
represent the complexity of real landscapes. Ecosystem statistics
only indicate the general characteristics of a small region, they
cannot represent the spatial structure and continuous gradations
that characterize real landscapes.

Moody etal. (2005) tried to combine both temporal and spatial
methods and developed an ecosystem-dependent temporal
interpolation technique to fill missing or snow-covered pixels in
the MODIS albedo data product. The shapes of the pixel’s and
region’s ecosystem phenological curves are determined first
(Moody et al., 2005). The method imposes pixel and regional
ecosystem phenological profile onto the target pixel’s temporal
data to maintain pixel-level spatial and spectral detail and

integrity (Moody et al., 2005). This ecosystem curve fitting (ECF)
method uses both spatial and temporal information to derive
value-added data sets.

The ECF method cannot be simply applied to LAI products for
several reasons. First, LAI is an 8-day composite product and its
temporal curve is not as smooth as other daily products. There are
realistic variations that look like outliers, for example those
associated with crops in the growing season. Second, the LAI
profile from the pixels with the same ecosystem classification
may not represent the pixel itself. This is mainly due to the coarse
land surface classification that is still problematic for mixed
pixels. For example, ‘cropland’ could include corn, soybean or
the mixture of the two. The ECF method assumes there are no
mixed pixels for all the ecosystem classes. Most importantly, for
the same ecosystem, their LAI could vary widely within a short
distance due to different vegetation densities. For example, the
tree cover of central Maryland, USA (15-45%) is about half of
the typical temperate forest (50—90%) in the surrounding
mountains (DeFries et al., 2000). Their albedos are very similar,
but their LAI could differ by 2.0-3.0 (Fang & Liang, 2005). One
of our studies in a semi-arid area also illustrates the problem of
using the regional ecosystem average (Fang et al., 2005). The
land cover maps label the study area as ‘shrub’; however, the area
is composed of about 20-30% trees, 20—30% grasses and 50%
bare ground (Fang et al., 2005). Obviously, errors will be
introduced to the ECF method if the vegetation fraction is not
accounted in the curve fitting procedure.

The objective of this paper is to develop a filtering algorithm
that aims to fill spatial and temporal gaps and improve bad quality
values from contextual data (in space and time). In addition to
many missing values, a significant amount of the MODIS LAI
data is retrieved from the backup algorithm. We will first analyze

Table 3
Percentage of MODIS LAI product with different Quality Control flags for North America during 2000-2004
PFTS 1 2 3 4 5 6 7 8 9 10 11
SCF_QC 0 47.6 37.8 43.2 43 59 57.8 54.3 53.8 48.7 22.3 41.1
1 2 7.1 1.6 5.5 0.4 1 2.5 2.2 0.5 2.6 0.6
2 5.1 4.7 53 4.6 54 5.1 5.7 4.1 34 1.4 4.3
3 19.5 27.3 16.5 23.9 14.1 15.8 18 16.9 8.7 23.4 13.3
4 25.8 23.1 333 22.9 21.1 20.2 19.5 23 38.7 50.3 40.7
Retrieval index 71.8 62.2 73.1 67 80.8 78.8 75.9 76.8 85 51.6 75.8

PFTs shows different plant functional types with 1-11 correspond to (a)—(k) in Fig. 1.
RI (Retrieval index)=(SCF_QC0+SCF_QC1)/(SCF_QC0+SCF_QCI1+SCF_QC3).
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Fig. 1. Seasonal variation of North America MODIS LAI from 2000 to 2004. The multiple year LAI average (solid line) was obtained from five years’ 8-day best quality (QC <32) LAI directly (not from the average of
means). The dashed lines are the mean LAI+one standard deviation. DOY: Day of the year.
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the MODIS LAI product in this section. The new spatio-temporal
filter will be described in Section 2, followed by the filtered
results and their validation in Sections 3 and 4, respectively.

1.1. The MODIS LAI product

Surface ecosystems are represented as patches of plant
functional types (PFTs). The MODIS land cover classification
products provide the plant functional type (land cover type 5) in
consideration of the Community Land Model used in climate
modeling. The MODIS 1 km PFT map consists of 11 primary
PFTs: evergreen needleleaf and broadleaf trees, deciduous
needleleaf and broadleaf trees, shrub, grass, cereal and broadleaf
crops, urban and built-up, snow and ice, barren or sparsely
vegetated. PFTs provide a direct linkage to leaf-level ecophysi-
ological measurements and ecological theory (Bonan et al., 2002).
Models of vegetation dynamics and biogeography routinely use
PFTs to represent the surface landscapes (Haxeltine & Prentice,
1996; Running & Gower, 1991; Running & Hunt, 1991). Here we
assume that each 1 km pixel has only one PFT. The MODIS land
cover product does provide a secondary class and the percent of
the secondary class, but this class was not considered since there is
no confidence level or QC data associated with it.

To examine the global MODIS LAI product, quality control
flags need to be consulted (Table 1). Non-vegetated areas are
filled with different values (Table 2). Globally, about 67% of
pixels are retrieved by the main radiative transfer algorithm and
the others by the backup algorithms for the current collection 4
product (Yang et al., 2006). We have also examined the five-year
(2000—2004) MODIS collection 4 1-km LAI product and its QC
layers for North America. In North America, less than half of the
land areas (48.6%) are retrieved successfully by the main
radiative transfer method during the 2000-2004 period, lower
than the global average. For shrub, only 59.4% is retrieved by the
main radiative transfer method during the period, the highest
among all the plant functional types (PFTS in Table 3). The
retrieval index, the ratio of the number of pixels retrieved by the
main algorithm to the total number of retrievals by both the main
and backup algorithms, is often used to represent the data retrieval
quality (Wang et al., 2001). The retrieval indices for the herba-
ceous types (0.808, 0.788, 0.759, 0.768 for shrub, grass, cereal
and broadleaf crops, respectively) were all higher than those of
the trees (0.718, 0.622, 0.731 and 0.67 for the evergreen needle-
leaf, evergreen broadleaf, deciduous needleleaf, and deciduous
broadleaf trees, respectively). The highest and lowest retrieval
indices were observed for urban/built-up and snow/ice types,
respectively (0.85 and 0.516). For barren or sparsely vegetated
area, the retrieval index was also higher (0.758) than for trees.

For pixels retrieved with the main RT method with the best
possible results (QC <32), their values are used as references and
kept in the output. Fig. 1 shows the seasonal variation of MODIS
LAI from 2000 to 2004 for different PFTs. The average values
(solid lines) were obtained from five years’ 8-day best quality
(QC<32) LAI directly. Our algorithm mainly targets low quality
and missed pixels. To calculate the background value, the pixel’s
multi-year average was used to fill the missing pixels. If the multi-
year average does not exist, an improved VCF—ECF method will

be applied. If no values exist in the MODIS LAI product, a
temporal filter is activated to calculate the observational values.
The new filter combines both background and observational
information in order to generate improved products.

2. Description of the temporal and spatial filter (TSF)
2.1. Theoretical basis

Considering the case of a single observation at location ;, two
estimates are used for the analysis: 1) the background value at the
gridpoint 7; and 2) the difference between the observation x,(7;)
and the background x,,(;) plus x,(#;). It is recognized that both the
background and the observation estimates contain errors. In this
case, instead of using a simple geometric function to calculate the
weight, the uncertainties of the background and observation are
included in the weighting function. These two estimates can be
weighted in an optimal way (Bergthorsson & Doos, 1955) to
calculate the target value x,(7;):

xalri) = Et;be(r[) + E()*Zw(r,-, rj){xb(r,-) + [xo(rj) — Xb("j)]}
a\li Egz n EO—2

(1)

Where E; and E- are the error variance for the background
and observation, respectively. Both the background error and
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Fig. 2. Flowchart of the temporal spatial filtering (TSF) process. QC stands for
the MODIS quality control flag.
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Fig. 3. Comparison of standard deviation (STD) for different pixels (pink lines) and PFTs (dark lines). “_Pixel” are multi-year statistics for each pixel and are clustered into different PFTs for display. The statistics of
different PFT were calculated at tile level. “_Tile” represents all pixels in the tile, and “_Tile20” only pixels within +20% of VCF range in the tile. Only best quality LAI data (QC<32) were considered.
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observation error are assumed homogeneous and spatially
uncorrelated and E7 and E? are assumed independent of location.
w(r;,r;) is the weighting function dependent on the time distance
d;; between points r; and 7;

( R~
w(ri,7;) = max 0,712’1) (2)
R +di

where R is a predefined radius of influence. An R=16, i.e., two
MODIS LAI data cycles in the neighborhood, is used in this
paper. If the two estimates are at a specific location on the same
day (i.e., ;=r;, and w(r;,r;)=1), Eq. (1) takes a simplified form as:

230 (7 25 (7
r(r) = 2 + Bl 4

E];2 + EO—2

Based on the above rationale, a three-step filtering technique is
developed to produce spatially and temporally continuous
products from existing discontinuous ones. Fig. 2 shows the
general process of the temporal spatial filter (TSF):

1) Temporal filling. The missing pixel is filled with its multi-year
average first. This initial step is based on the fact that the pixel’s
multi-year variation is less than or similar to the spatial
variation within an ecosystem (Section 2.2);

2) Applying an improved ecosystem curve fitting (ECF) method
based on the MODIS vegetation continuous fields product
(VCF) (Hansen et al., 2003). In contrast to the existing ECF
method, the new VCF-ECF method imposes regional VCF-
dependant phenological behavior onto each target pixel’s
temporal data in order to maintain pixel-level spatial and
temporal integrity (Section 2.2.1);

3) Calculation of the observation value. In general, the MODIS
standard LAI data are used as the observation. However, if the
data are missing (QC>128), a temporal filter will be triggered
to obtain the observed value (Section 2.3).

4) Combined temporal and spatial filtering. Using the results from
the above steps as the background and observation values, an
integration formula (Eq. (1)) is designed to integrate the pixel’s
multi-year trend and yearly variation and obtain the target
value.

In the following sections, we will discuss how to calculate the
background and observation values and their error variance.

2.2. Calculation of the multi-year variation (background)
Is the spatial average (within a PFT) or temporal average (over

multiple years) the best “background” value? To answer this
question and to demonstrate the feasibility and reliability of the

Fig. 4. Comparison of MODIS LAI maps before and after filtering (day 225, 2000). (a) MODIS standard LAI data; (b) after SG filtering; (c) New value-added MODIS

LAI data sets after TSF.
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Fig. 4 (continued ).

proposed method, it is necessary to compare the product’s
variation over different years (pixel level) and within an
ecosystem. For ease of computation, we compared the standard
deviation (STD) and coefficient of variation (CV) at both pixel
and tile levels. The MODIS LAI products are reprojected on the
Integerized Sinusoidal 10-degree grid, where the globe is tiled
into 36 tiles along the east—west axis, and 18 tiles along the
north—south axis. At the pixel-level, the STD and CV are first
calculated over multiple years for a single pixel and then averaged
for each plant functional type. At the tile level, the STD and CV
are first calculated within a tile for each PFT and then averaged
over the study area for multiple years.

Fig. 3 compares the STD at both temporal and spatial
dimension for different PFTs. The pink line shows the STD of a
pixel over multiple years (STD_Pixel). The thinner dark line
shows the STD of different PFT within a tile (STD_Tile). The
multi-year STD has a strong seasonal trend. For vegetation, it is
lower in winter and spring, and increases during the growing
season. For most PFTs, the yearly STD is consistently lower than
the tile STD. The only exception is for snow and ice, which has a
higher yearly STD in the spring because of different thaw dates.
The CV shows the same phenomena (not shown here). This
finding supports our assumption that a multi-year average is more
representative and stable than the ecosystem average. Using the
sinusoidal tile systems, the mean values of each PFT over the

same latitude zone (10°) were calculated. Both STD and CV were
examined at different latitude zones at pixel and tile levels (not
shown here). The finding is the same as previously and is more
remarkable at higher latitudes (>50°).

The LAI gaps were first filled with multi-year mean values.
Five years of MODIS standard LAI data (2000-2004) were
calculated. The mean value map illustrates the expected LAI
value of a pixel at a certain time of year. The variance of LAI is
interpreted as uncertainty for the LAI estimation. It was calculated
for each PFT in a tile. The variances for patches of good and poor
input pixels were calculated separately. In Fig. 2, the multi-year
average is considered first. When pixel values are missing over all
years and thus such multi-year average does not exist, the ECF
method is applied as described next.

2.2.1. The ECF and VCF-ECF methods

The ecosystem curve fitting (ECF) is essentially a unique
spatial filtering technique. To provide the pixel’s missing data, the
shape of the curves is imposed onto the pixel’s valid temporal
data by computing an average offset between pixel data and the
behavioral curves. The ECF method is crucial, in cases where all
five-year data are missing for some pixels and the variation within
the ecosystem is relatively small (STD_Tile<STD_Pixel). The
existing ECF method was improved based on the vegetation
continuous field (VCF) data in case of high within-ecosystem
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Fig. 4 (continued ).

heterogeneity (STD_Tile>STD_Pixel). The VCF data were used
to circumvent the difficulties of large LAI variations within an
ecosystem. VCF provides continuous field representations of the
heterogeneous gradations in land cover that characterize much of
the Earth’s surface. For many applications, such as physical
models of land surface dynamics, a continuous field provides a
more accurate representation of the land surface than does a
simplified thematic land cover class with discrete boundaries
(Small, 2004). The MODIS VCF product contains the percentage
of trees, bare, and herbaceous which add up to represent 100%
ground cover (Hansen et al., 2003).

We have illustrated that the multi-year STD and CV are
constantly less than that of the ecosystem variation (Fig. 3). If
VCF is considered, the ecosystem STD and CV could be greatly
reduced. If a pixel’s value is missing, it is filled with the eco-
system average calculated from pixels with similar VCF (e.g.
within a certain VCF interval o). For computational efficiency, a
PFT’s average value for different VCF intervals (a=10%, 20%,
30%, ...) within a tile are calculated first. The average LAI value
calculated from a lower o is preferred for missing pixels. If it does
not exist, a wider interval is searched, starting from 10%.
Statistics show that the average PFT values are much more stable
when VCF is imposed (Fig. 3, STD_Tile20). Statistics calculated
from different o values were compared. The 20% VCF interval
was found very feasible for this application and the STD and CV
were close to the multi-year variations (Fig. 3, STD_Tile20).

The North America MODIS VCF data in 2001 (1 km) were
used (http://glef.umiacs.umd.edu/data/modis/vcf/).The MODIS
VCF data are available in Goodes’ projection or latitude/
longitude. The VCF—ECF module is activated if there is no
QC<32 observation over all years and when the CV_Tile is
higher than the CV_Pixel.

2.3. Calculation of the observational value

The above section calculates a ‘background’ value x, in
Eq. (1) for each pixel. To use Eq. (1) for calculating the new
estimate, we also need an observed value (x,). The original
MODIS LAI data can be treated as the observed value. When
32<=QC< 128 (using the back-up algorithm), they are treated as
the observation. The variance of LAl is calculated with the same
quality label within the particular PFT. Based on our rationale in
Section 2.1, it’s logical to obtain the observational variance for
each pixel. In practice, the particular PFT’s variance within the
tile is used for simplicity. When QC> 128, there is no retrieval
and a local temporal filter is necessary to obtain the ‘observed’
value from the neighboring best values (Table 1). If no best QC is
available in the neighborhood, the background values will be
used in the temporal filter. After evaluating several common
temporal filters, we applied the Savitzky—Golay (SG) filter (Chen
et al.,, 2004; Savitzky & Golay, 1964) and their coefficients
(windows size N=5) in this study. The SG filter was selected here
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because of its insensitivity to outliers and capability for full
automation. It is also easy and fast to implement for a large area
and has worked well for NDVI filtering (Chen et al., 2004). The
combined variance is calculated with

N
> GE
k=1

2
Eo=—"%—
>

k=1

Cy (4)

Where C, is the coefficient of the SG filter and Ej is the
variance of the kth day in the temporal filter. A posteriori
readjustment of the filtered SG curve is generally used in other
application of the SG filter for the NDVI profile (Chen et al.,
2004); however, it was not applied in this paper because the
readjustment will lead to an LAI overestimation. Note the SG
filter was applied locally, not the seasonal application done below
for comparison (Section 3.3). In addition, the SG filter will
malfunction when the temporal gaps are bigger than half the
window size. In this case, a linear interpolation is suggested.

At higher latitudes (>50°), there are large areas marked ‘no
retrieval’ in the MODIS LAI products in the spring due to
persistent clouds and snow coverage. Even if there are some LAI
retrievals, the data quality is ubiquitously low. To approximate the
observation information, the ecosystem curve fitting algorithm

was used (Moody et al., 2005). Moreover, a large amount of
sparsely vegetated areas were found to have been assigned the
filled values due to the failure of the MODIS retrieval algorithm.
However, these are crucial ecosystems and have been fully
processed using our algorithm.

3. Results

We present below the results of our filtering method on LAI
values over North America, followed by their climatologies for
different plant functional types. The TSF results were compared
with those from the Savitzky—Golay (SG) filter (Chen et al.,
2004; Savitzky & Golay, 1964) for all of North America. To
reduce the effort of reprojecting the tiles with their sinusoidal
(SIN) projection, the LAI were calculated tile by tile. The final
results were reprojected to Lambert Azimuthal Equal-Area
(LAEA) for North America from which they can be easily
transformed to other projections.

For visualization purposes, a simplified projection look-up
table was developed to facilitate the usually time-consuming
reprojection process. Since a pixel’s coordinates in the new
projection system and its position in a tile are similar to a multiple-
to-one match, a projection table was created with four columns.
The first two columns are the coordinates in the new projection
systems, and the other two columns represent the positions in a

Fig. 5. New reconstructed LAI data sets with different methods (day 169, 2001): (a) the Savitzky—Golay filter; (b) the new TSF method.
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Fig. 5 (continued ).

particular sinusoidal tile. Thus, the complicated reprojection and
resampling process is simplified as a general file read and write
process.

3.1. Spatially complete LAI products for North America

Fig. 4 shows the MODIS standard LAI data and the improved
LAI products over North America on day 225, 2000. The white
colored pixels are non-vegetated areas, such as perennial snow,
ice and urban areas, corresponding to the filled values in Table 2.
The MODIS standard LAI data were of very low quality due to
large cloud coverage (black pixels in Fig. 4). This is even serious
at high latitudes (>50°). We have greatly improved the data
quality and their utility, especially at high latitudes (Fig. 4c)
where the majority of pixels have no valid retrieval. Our new
products are spatially complete. Visually, the TSF results gen-
erally produced considerably lower LAI values than the original
product (Fig. 4). For example, around the Great Lakes Fig. 4a
shows LAI about 6—8 whereas Fig. 4c shows LAI about 4-5.
However, in the mid-west states (broadleaf crops), the TSF results
increased the original LAI values by about 1.0—1.5. Improve-
ments are also observed in the Appalachian mountains with more
continuous values corresponding with landscapes.

The results for year 2001 are shown in Fig. 5. In year 2001,
there is no LAI data on day 169 due to instrument problems. The

LAI of this day was successfully restored with the TSF technique
(Fig. 5b).

3.2. LAI climatologies for North America

The land product climatologies provide reasonable estimates
for surface and atmospheric model variables. Fig. 6 displays the
LAI climatologies before and after filtering in 2001. The mean
value (solid thick lines) for each plant functional types is shown.
For comparison, the MODIS standard LAI product is also
displayed including those from the main radiative transfer (RT)
algorithm (LATL_QC<32, thin solid lines) and those from both the
RT and backup algorithms (LAL_QC<128, thin dashed lines)
(Fig. 6).

In general, after the filtering, the new products have greatly
improved the quality of the original data products by filling gaps
and smoothing spikes. For vegetation, the LAL_TSF climatolo-
gies display clearly a seasonal growing trend. The standard
deviation for each variable was also examined (not shown in the
figure) and was found to be higher in the summer and lower in the
winter.

For forests, the TSF results are in very good agreement with
the original LAL_ QC<32 for each PFT. The MODIS LAI
retrieved from the main algorithm (LAL_QC<32) is usually
lower than the overall mean value (LAI_QC<128), especially for
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evergreen and deciduous broadleaf trees (Fig. 6b and d). For both
evergreen and deciduous needleleaf trees, the LAI_TSF produced
very similar results to the MODIS LAI products (Fig. 6a and c).
The climatology is abnormally low in January, however, due to
the very poor quality in the original data set. There are no valid
MODIS LAI data at higher latitudes (>50°) for the spring of
2000-2003. For both evergreen and deciduous broadleaf trees,
the LAL_TSF is lower than the overall average (LAL_QC<128),
but very close to the LAI_QC<32 during some periods. For the
evergreen broadleaf trees, the LAL_TSF line is smooth and
usually larger than the LAL_QC<32 by about 1.0—1.5 for most of
the year (Fig. 6b). The biggest difference lies in the deciduous
broadleaf trees (Fig. 6d). In the original products, the
LALQC<128 is much higher than the LA QC<32. For
deciduous broadleaf trees, the early summer green-up is much
clearer in the TSF products, while it was much elongated in the
LALQC<32 (Fig. 6d). Differences between the LAL_ QC<32

Table 4

Field sites used for LAI intercomparison of the MODIS LALI and our filtered LAI

and LAI_QC<128 also reveal the potential uncertainties in the
MODIS LAI data products.

For herbaceous vegetation, the TSF results are very close to
the standard LAI values, especially for grass, shrub, barren or
sparsely vegetated areas (Fig. 6e,fk). This is partly due to the
high quality of the original MODIS LAI products. Other research
has shown that the MODIS LAI is more robust for herbaceous
vegetation types (Cohen et al., 2003; Fang & Liang, 2005; Yang
et al., 2006). However, there are some noticeable deviations for
cereal and broadleaf crops in the summer, when the LAL_QC<32
is lower than the overall average by about 1.0. During this period,
the TSF climatology is between that of the best and overall
MODIS LAI products (Fig. 6g and h).

For the urban and built-up area, our product is closer to the
overall climatology (Fig. 6i). The differences between the
LALQC<32 and LAL_ QC< 128 illustrate the complexity of this
cover types and uncertainties of the standard LAI. For snow and

# Name Biome class Latitude Longitude Method Database or reference
1 Bondville Broadleaf crop 40.007 —88.291 Destructive harvest BigFoot

2 Konza Grass 39.082 -96.56 LAI-2000 BigFoot

3 Harvard forest Broadleaf forest 42.538 =72.171 LAI-2000 BigFoot

4 Sevilleta Shrubland 34.344 —106.671 LAI-2000 BigFoot

5 Tundra Shrubland 71.268 —156.612 LAI-2000 BigFoot

6 Larose Needleleaf forest 45.381 =75.217 Hemispherical photography VALERI

7 Santa Rosa Broadleaf forest 10.815 —85.615 LAI-2000 (Kalacska et al., 2005)
8 Priest River Needleleaf forest 48.350 —116.833 Allometric & Ceptometer (Duursma et al., 2003)
9 Prince Albert Needleleaf forest 53.700 —106.200 LAI-2000 (Barr et al., 2004)

10 Talamanca Broadleaf forest 9.594 —83.742 LAI-2000 (Holscher et al., 2003)
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ice, our climatology values are also between the LAL_ QC<128
and LAL_QC<32. The profile of LAL_TSF is more approximate to
the LALQC<128 during winter and spring. The difference
between LAL_QC<32 and LA QC< 128 exposes the uncertain-
ties existing in the original products.

The operational MODIS LALI algorithm uses six major biome
types as a priori information to constrain the vegetation structural
and optical parameter space: grasses and cereal crops, shrubs,
broadleaf crops, savannas, broadleaf forests and needleleaf forests
(Knyazikhin et al., 1998). As explained above, using the PFT is
advantageous in representing landscapes. However, there exist
some mismatches between the six biomes of the LAI products
and the eleven PFTs. This may explain part of the differences in
the deciduous broadleaf trees, urban and built-up, and snow and
ice types (Fig. 6d, i and j).

3.3. Comparison with the SG filter

The seasonal MODIS LAI products after SG filtering for both
2000 and 2001 are shown in Figs. 4b and 5Sa, respectively. The SG
filter is good at providing a temporally continuous LAI profile
over the season. This trait also helps to fill some mixing pixels
spatially.

The SG filter greatly improved the poor MODIS LAI data at
higher latitudes (>50°) caused by clouds. Improvements are also
observed in the Florida panhandle and the Alaska peninsular. In
general, the LAI_SG results (Fig. 4b) are closer to the original
LAI values than the TSF method (Fig. 4c), for example, in the
Great Lakes regions. For broadleaf crops, the LAL_SG is about
1.0—1.5 higher than the MODIS standard LAI. This overestima-
tion is quite similar to the TSF results. However, there are still
some missing pixels, especially at higher latitudes (Fig. 4b). This
problem is inherent to the SG method because it is essentially a
temporal filter. The TSF method resolved this issue by taking into
account the spatial distribution of LAI for different PFT (Fig. 4c).
On day 169, 2001, the MODIS LAI was missing. Both SG and
TSF reconstructed the LAI successfully (Fig. 5). The SG results
have a higher spatial dynamic compared to the TSF. The SG
values are higher than those of the TSF in the eastern United
States, but are similar in the western states. For evergreen
needleleaf trees, the SG results are also a little higher. The SG
filter can give different results by altering the coefficients, but it
still cannot provide quality spatially continuous products since it
only takes into account values in the temporal neighborhood. The
spatial correlations are not considered by the SG filter.

The climatology of the LAL_SG was also compared with other
results (Fig. 6). For the LAL_SG curve, we did not separate the
main radiative transfer and the backup retrieval algorithms. The
LALSG curve approximates more closely the overall MODIS
LAI profile than the best LAI (QC<32). In general, the LAL_SG
is higher than the LAL_TSF in summer and fall, but lower than the
latter in winter and spring, especially for the trees. For the
evergreen broadleaf trees, the LAI_SG is higher than the
LAL_TSF for the whole season. For snow and ice, the LAL_SG
is consistently lower than the MODIS LAI Although we did not
do any posterior adjustment, the SG algorithm will easily lead to
overestimation for many cover types. Comparatively, the TSF did

a better job restoring the spatial and temporal distribution of
seasonal LAIT trend.

3.4. Mean LAI for different latitude zones

Fig. 7 shows time series of LAI in 2001, represented by
average LAI values within 10° latitude bands. A very regular
annual cycle of vegetation growth is observable in the figure. In
general, LAL_ QC<32 is lower than the curve of LAL QC<128.
This indicates the potential overestimation of the backup
vegetation index method. After filtering, the new LAI product
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Fig. 9. The MODIS standard LAI product (a) and the results after TSF (b) for tile h12v04 on day 209, 2001 (1200 km % 1200 km). The red cross is where the HARV site

is located.

filled the gaps and valleys in the MODIS products. Both SG and
TSF provide temporally continuous curves for LAIL. The LAL_SG
curve is similar to the LAL_QC<128 curve, while the LAL_TSF
curve is similar to the LAL_QC<32 curve.

In the 10°-20° latitude zone, the LAI is consistently around
3.0 over the year, higher than its value at all other latitudes in
North America. This is reasonable because of the dominance of
evergreen broadleaf trees in this latitudinal zone. At high latitudes
(70°-80°), LAI is less than 0.5 for most of the year, coinciding
with the sparsely vegetated areas of this region. For other
latitudinal zones, the seasonal distribution of LAI is clear. They
display a summer plateau and a winter valley, corresponding to
the vegetation green-up and senescence in the Northern
hemisphere.

4. Comparison with other data sets

The new LAI products are compared with other LAI data
acquired at different levels. They are first validated with ground
measured LAI data over North America. They are then compared
with LAI estimated from Landsat ETM+ data. Finally, we
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compared the new LAI products with the monthly MODIS LAI
composite data.

4.1. Comparison with in situ measurements

Ten field LAI measurements sites over North America have
been selected for evaluation of the filter performances (Table 4).
Five sites are from the BigFoot network (Cohen et al., 2000—
2004a) and one site belongs to the VALERI project (Baret et al.,
2006). Other four additional sites from the literature are also used.
A total of 25 observations were obtained as some sites have
multiple observations during the season. Different LAI measure-
ment methods have been used in the field (Table 4). These points
were each reprojected to the corresponding MODIS LAI and
LAL_TSF products, respectively.

A good agreement between MODIS LAI and field measure-
ments is observed (R*=0.828 and RMSE=0.896) for all biomes
(Fig. 8a). The disagreement is slightly larger for a few broadleaf
and needleaf forest points. The largest discrepancy reaches 2.6 at
a broadleaf forest site (Santa Rosa). The filtered LAI (Fig. 8b)
agree fairly better with the ground measurements (R*=0.899 and
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Fig. 10. Comparison of MODIS LAI and ETM+ LAI (a), and LAL_TSF and ETM+ LAI (b) at the HARV site (Jul 28, 2001). The dashed cross shows the measured
mean value and the standard deviation. “diff” is the mean differences of MODIS LAI and LAL TSF to ETM+ LAL respectively. The hollow points in (a) indicate that

all LAI are retrieved with the backup algorithm.
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Fig. 11. The MODIS standard LAI product (a) and the results after TSF (b) for the BARC region on day 217,2001 (400> 300 km). The red cross shows the location of

the BARC site.

RMSE=0.669). One possible reason for the discrepancy is that
the in situ field observation may not be representative of the
overall MODIS pixel due to the heterogeneous ground condi-
tions. More definitive conclusion on the accuracy of the
reprocessed LAI could be drawn with more validation points.

4.2. Comparison with ETM+ and field LAI

‘We compared the new LAI products with the LAI data derived
from Landsat ETM+ at two of the EOS land validation core sites
(Morisette et al., 2002). The first one is the Harvard forest
(HARV) site (42.538°, —72.171°) located in Massachusetts,
USA. It is mainly covered by deciduous broadleaf forest. The
other one is the Beltsville Agricultural Research Center (BARC)
site (39.03°, —76.85°) located in Maryland, USA. The land cover
types at BARC site are temperate broadleaf forests and
agricultural lands. In both sites, ETM+ LAI data have been
validated with field measurements (Cohen et al., 2003; Fang &
Liang, 2003). The ETM+ LAI data were up-scaled to the MODIS
resolution (1 km) with a spatial average sampling method and
compared with the MODIS LAI and the TSF products,
respectively.

4.2.1. Harvard forest site

Fig. 9 shows the MODIS standard LAI product (9a) and the
results after TSF (9b) for tile h12v04 on July 28, 2001 (DOY
209). The retrieval index for this tile is only 0.32. In general, the
TSF method produced lower LAI than the MODIS LAI. The
distribution of the LAIL_TSF is consistent with the landscape
patterns. The LAI surfaces at Harvard forest were produced from
the ETM+ image acquired on July 26, 2001 (DOY 207) (Cohen
etal., 2000—2004b). The orthogonal RMA (Reduced Major Axis)
regression method was used (Cohen et al., 2003). The ETM+
surface has a grain of 25 m and covers a 7x7 km extent. The
MODIS LAI data (DOY 209, 2001) at this site were all retrieved
with the backup algorithm due to cloud effect. Field measure-
ments at this site were taken around the satellite overpass days
(Gower, 2000-2004).

The MODIS LAI and LAL TSF data were registered to the
ETM+ LAI maps (7*7 km) and they were compared in Fig. 10.
The mean value of field data and their standard deviation are
shown with a cross. The field LAI is shown as a reference. The

mean differences of MODIS LAI and LAL_TSF to ETM+ LAI
are calculated. Both MODIS LAI and LAL_TSF overestimated
the ETM+ LAIL but the TSF points fall closer to the 1:1 line,
indicating that the TSF results have improved the MODIS
standard LAI. MODIS LAI overestimated ETM+ LAI by 1.42 at
this site (Fig. 10a). All MODIS LAI values are higher than the
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Fig. 12. Histogram comparison of broadleaf crop pixels by the MODIS backup
algorithm in the BARC site (Aug 2,2001). (a) the MODIS LAI products, (b) ETM+
LAI, and (c) the TSF processed LAI data The x-axis is the LAI values. The
numbers at the upper right corner are the mean and standard deviation, respectively.
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Table 5

Yearly mean LAI calculated from the BU and TSF monthly composites for different PFT

PFTs 1 2 3 4 5 6 7 8 9 10 11
LAILBU 2.02 3.84 2.08 3.05 0.77 0.9 1.18 1.53 1.27 0.7 0.52
LAL_TSF 1.69 3.14 1.82 2.69 0.63 0.78 1.01 1.31 1.13 0.22 0.4
Difference 0.33 0.7* 0.26 0.36 0.14 0.12 0.17 0.22 0.14 0.48* 0.12*
R? 0.949 0.58 0.976 0.938 0.942 0.918 0.943 0.946 0.923 0.052 0.754

The mean difference and R? of the two data sets are also shown. PFTs 1—11 correspond to (a)—(k) in Fig. 13.

* Significant at the 0.1 level.

mean field measured value. The average difference between
LALTSF and ETM+is 0.52 (Fig. 10b), less than the deviation of
MODIS LALI There is an outlier point ([3.8, 1.9], out of Fig. 10b)
that has a very low value. This is the only point that has a valid
MODIS LAI retrieved with the main radiative transfer method (in
year 2002) over the 7 x 7 km region in five years. This value was
used as the background x;, leading to the underestimation of
LALTSF compared with ETM+ LAI in this point. For other
points, the LAL_TSF and ETM+ LAI agree very well.

4.2.2. Beltsville Agricultural Research Center site

The MODIS standard LAI for the BARC region is shown in
Fig. 11, together with the filtered results. The ETM+ LAI data of
this site were derived from the aggregated ETM+ 510 m surface
reflectance with a hybrid approach (Fang & Liang, 2005). These
data have shown very good agreement with field measurements
over the region. For broadleaf crops, the MODIS LAI products,
derived from the main algorithm, agree well with both ETM+
LAIT and field measurements (Fang & Liang, 2005). The errors
are mainly observed in pixels with the backup retrieval algorithm.
These errors can be corrected with the TSF method (Fig. 12).
Fig. 12a shows the distribution of the original MODIS LAI for
broadleaf crops retrieved with the backup algorithm. The MODIS
LAI data have overestimated the ETM+ LAI (Fig. 12b) by about
1.0. On Aug 2, 2001, 25% of broadleaf crops were retrieved with
the backup algorithm. There are more than 45.5% pixels located
at the higher end (=4.0) of the LAI span. Fig. 12c demonstrates
that the TSF algorithm has greatly improved the LAI values for
broadleaf crops. The histogram of the TSF results is very similar
to the ETM+ LAI. Their mean values (2.37 vs. 2.84) are alike and
the standard deviations (0.87 vs. 0.87) are the same.

The MODIS LAI overestimated broadleaf forests in this site
by about 2.0-3.0 (Fang & Liang, 2005). However, the
improvements of the TSF algorithm for broadleaf forests are
not as significant as for other cover types. This can be attributed to
the low quality of the MODIS products for broadleaf forests, even
with the main RT algorithm. Currently, the MODIS science team
is working toward improving the LAI estimation for broadleaf
forests that will be distributed in collection 5 (Shabanov et al.,
2005). We are expecting enhanced TSF performance over
broadleaf forests when the new products are used.

4.3. Comparison with monthly composite data
To analyze the quality of the reprocessed data we compared

our data with the latest monthly LAI composite data provided by
Boston University (http://cliveg.bu.edu and fip:/primavera.bu.

edu/pub/datasets/MODIS/) in Fig. 13. For each monthly
composite, there are four 8-day LAI and QC values from
MODI15A2 product (days 121 and 241 are used twice). If at least
one of the inputs has QC <32, the composite value is the average
of all high quality inputs. If none of the input has QC<32, the
output LAI is assigned the value corresponding to the maximum
FPAR. The TSF monthly composites are produced in a similar
fashion. The monthly composites are representative of the LAI
amplitude for North America in a given year. The mean LAI data
from the two methods display typical patterns of LAI time series
for different PFT (Fig. 13). For example, the crops show a clear
seasonal green-up and senescence mode while there is consid-
erable scatter amongst the snow and ice pixels over the year,
especially during the spring and winter seasons. There is a high
correlation between the two data sets for most PFTs (Table 5).
Moreover, for three PFTs, the evergreen broadleaf tree, snow and
ice, and the barren or sparsely vegetated, the monthly mean LAI
of the BU composites are significantly higher values than those of
the TSF data sets. Among all PFTs, the evergreen broadleaf tree
shows the biggest difference where the BU composite is 0.7
higher than the TSF data. The large difference could be due to the
field complexity of the evergreen broadleaf trees. The monthly
LAI of the evergreen broadleaf trees bears a higher STD than
other PFTs (Fig. 13). Moreover, the multi-year STD of the
evergreen broadleaf tree is also very high (Fig. 1). The TSF
algorithm takes into account the multi-year average and thus will
mitigate the high deviation for a certain year (2001). The MODIS
LAI is also known for its overestimation of wood vegetation
because of algorithm deficits (Myneni et al., 2005; Shabanov
et al., 2005). For the evergreen broadleaf trees, about 37.8%
pixels are retrieved by the backup algorithm and 23.1% pixels
have no valid retrieval (Table 3), which partly explains the
overestimation of this plant functional type. For other PFTs, the
LAI estimates of the BU composites are only slightly higher than
the LAI estimates of the TSF data. The small difference is to be
expected since both data sets are assembled from the best QC
data.

5. Conclusion

There are large numbers of low quality and missing LAI
values in the original MODIS products due to atmospheric or
instrument effects. A temporal spatial filtering (TSF) method was
designed to produce spatially and temporally complete products.
The new LAI products are derived from the highest quality
MODIS LAI products. Both low quality data and missing values
are filled with the new estimates from the highest quality data.
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Results in this paper have shown that the TSF method is able
to reconstruct higher quality LAI time series products efficiently.
Climatologies of the new spatially complete LAI products were
calculated based on different plant functional types (PFT). The
new LAI products illustrate clear seasonal trends for different
PFTs and latitude zones. Statistics from the continuous LAI
products should improve our understanding of the spatial dis-
tribution of LAL

The TSF results were compared with the Savitzky—Golay
(SG) filter. The TSF outperformed the SG filter in reconstructing
the distribution of LAI, both spatially and temporally. The SG
filter should be used cautiously to produce continuous LAI time
series, especially during the vegetation—growing season. In
contrast, our TSF algorithm is more robust and can be executed
automatically.

The TSF algorithm not only provides continuous products but
also improves the original data quality. This has been demon-
strated through comparison with ETM+ LAI and field measure-
ments at the HARV (broadleaf forest) and BARC (mixed
broadleaf forest and crop) sites. Our monthly composited data
and the MODIS LAI monthly composites agree very well for
most PFTs since both are derived from the best QC data. For the
two monthly data sets, significant differences exist for the ever-
green broadleaf forest, snow and ice, and the barren or sparsely
vegetated. It is acknowledged that more extensive validation
work is necessary for an in depth understanding of the TSF
method to produce continuous high-quality data products. Al-
though this method was implemented only over North America, it
will be straightforward to apply it globally with additional
resources.

Acknowledgements

The work is supported by NASA Grant NNG04GL85G. The
value-added LAI products will be available at the Global Land
Cover Facility (GLCF) of the University of Maryland (http://glcf.
umiacs.umd.edu/). We thank Dr. W. Cohen (Oregon State
University) and the BigFoot science team (http:/www.fsl.orst.
edu/larse/bigfoot/index.html) who made field measurements and
the LAI products from ETM+ available to the public. We also
thank the support team at the Land Processes Distributed Active
Archive Center (DAAC) (http://LPDAAC.usgs.gov), who helped
set up the Machine-to-Machine Search and Order Gateway
(MTMGW) which greatly facilitated the MODIS data down-
loading from the EROS Data Center (EDC).

References

Barr, A. G., Black, T. A., Hogg, E. H., Kljun, N., Morgenstern, K., & Nesic, Z.
(2004). Inter-annual variability in the leaf area index of a boreal aspen—
hazelnut forest in relation to net ecosystem production. Agricultural and
Forest Meteorology, 126(3—4), 237-255.

Baret, F., Weiss, M., Garrigue, S., Allard, D., Guinot, J.P., Leroy, M., Jeanjean, H.,
Bohbot, H., Bosseno, R., Dedieu, G., Bella, C.D., Espana, M., Gond, V., Gu,
X.E., Guyon, D., Lelong, C., Mougin, E., Nilson, T., Veroustraete, F., Vintilla,
R., submitted for publication. VALERI: A network of sites and a methodology
for the validation of medium spatial resolution land satellite products. Remote
Sensing of Environment.

Bergthorsson, P., & Doos, B. (1955). Numerical weather map analysis. Tellus, 7,
329-340.

Berterretche, M., Hudak, A. T., Cohen, W. B., Maiersperger, T. K., Gower, S. T., &
Dungan, J. (2005). Comparison of regression and geostatistical methods for
mapping Leaf Area Index (LAI) with Landsat ETM+ data over a boreal forest.
Remote Sensing of Environment, 96(1), 49—61.

Bonan, G. B., Levis, S., Kergoat, L., & Oleson, K. W. (2002). Landscapes as
patches of plant functional types: An integrating concept for climate and
ecosystem models. Global Biogeochemical Cycles, 16(2) 5-1-5-25.

Chen, J., Jonsson, P., Tamura, M., Gu, Z., Matsushita, B., & Eklundh, L. (2004). A
simple method for reconstructing a high quality NDVI time-series data set
based on the Savitzky—Golay filter. Remote Sensing of Environment, 91(3—4),
332-344.

Cihlar, J. (1996). Identification of contaminated pixels in AVHRR composite
images for studies of land biosphere. Remote Sensing of Environment, 56(3),
149-163.

Cohen, W. B., Maiersperger, T. K., & Pflugmacher, D. (2000-2004). LAI Surface
for BigFoot MODIS Land Product Validation Dataset. Oak Ridge, Tennessee,
U.S.A.: Oak Ridge National Laboratory Distributed Active Archive Center.

Cohen, W. B., Maiersperger, T. K., & Pflugmacher, D. (2000-2004). LAI Surface
for BigFoot MODIS Land Product Validation, HARV 2001 Dataset. Oak
Ridge, Tennessee, U.S.A.: Oak Ridge National Laboratory Distributed Active
Archive Center.

Cohen, W. B., Maiersperger, T. K., Yang, Z., Gower, S. T., Turner, D. P., Ritts,
W. D., et al. (2003). Comparisons of land cover and LAI estimates derived
from ETM+ and MODIS for four sites in North America: A quality
assessment of 2000/2001 provisional MODIS products. Remote Sensing of
Environment, 88(3), 233-255.

DeFries, R., Hansen, M., Townshend, J. R. G., Janetos, A. C., & Loveland, T. R.
(2000). A new global 1 km data set of percent tree cover derived from remote
sensing. Global Change Biology, 6, 247—-254.

Dungan, J. (1998). Spatial prediction of vegetation quantities using ground and
image data. International Journal of Remote Sensing, 19(2), 267-285.

Duursma, R. A., Marshall, J. D., & Robinson, A. P. (2003). Leaf area index
inferred from solar beam transmission in mixed conifer forests on complex
terrain. Agricultural and Forest Meteorology, 118(3—4), 221-236.

Fang, H., & Liang, S. (2003). Retrieve LAI from Landsat 7 ETM+ data with a
neural network method: Simulation and validation study. /EEE Transactions
on Geoscience and Remote Sensing, 41(6), 2052—2062.

Fang, H., & Liang, S. (2005). A hybrid inversion method for mapping leaf area
index from MODIS data: Experiments and application to broadleaf and
needleleaf canopies. Remote Sensing of Environment, 94(3), 405—424.

Fang, H., Liang, S., McClaran, M. P., Leeuwen, W. V., Drake, S., Marsh, S. E.,
et al. (2005). Biophysical characteristics and management effects on semiarid
rangeland observed from Landsat ETM+ data. IEEE Transactions on
Geosciences and Remote Sensing, 43(1), 125—134.

Gower, S. T. (2000-2004). LAl field measurements for BigFoot MODIS Land
Product Validation, HARV 2001 Dataset. Oak Ridge, Tennessee, U.S.A.: Oak
Ridge National Laboratory Distributed Active Archive Center.

Hansen, M., DeFries, R., Townshend, J. R., Carroll, M., Dimiceli, C., & Sohlberg,
R. (2003). 500 m MODIS Vegetation Continuous Fields. College Park,
Maryland: The Global Land Cover Facility.

Haxeltine, A., & Prentice, I. C. (1996). BIOME3: An equilibrium terrestrial
biosphere model based on ecophysiological constraints, resource availability,
and competition among plant functional types. Global Biogeochemical
Cycles, 10, 693—7009.

Holscher, D., Kohler, L., Leuschner, C., & Kappelle, M. (2003). Nutrient fluxes in
stemflow and throughfall in three successional stages of an upper montane rain
forest in Costa Rica. Journal of Tropical Ecology, 19, 557-565.

Jonsson, P., & Eklundh, L. (2002). Seasonality extraction by function fitting to
time—series of satellite sensor data. JEEE Transactions on Geoscience and
Remote Sensing, 40(8), 1824—1832.

Kalacska, M., Calvo-Alvarado, J. C., & Sanchez-Azofeifa, G. A. (2005).
Calibration and assessment of seasonal changes in leaf area index of a tropical
dry forest in different stages of succession. Tree Physiology, 25, 733—744.

Karnieli, A., Gabai, A., Ichoku, C., Zaady, E., & Shachak, M. (2002). Temporal
dynamics of soil and vegetation spectral responses in a semi-arid environment.
International Journal of Remote Sensing, 23(19), 4073—4087.


http://glcf.umiacs.umd.edu/
http://glcf.umiacs.umd.edu/
http://www.fsl.orst.edu/larse/bigfoot/index.html
http://www.fsl.orst.edu/larse/bigfoot/index.html
http://LPDAAC.usgs.gov

H. Fang et al. / Remote Sensing of Environment 112 (2008) 75-93 93

Knyazikhin, Y., Martonchik, J. V., Myneni, R. B., Dine, D. J., & Running, S. W.
(1998). Synergistic algorithm for estimating vegetation canopy leaf area index
and fraction of absorbed photosynthetically active radiation from MODIS and
MISR data. Journal of Geophysical Research, 103, 32,257—-32,276.

Moody, E. G., King, M. D., Platnick, S., Schaaf, C. B., & Gao, F. (2005). Spatially
complete global spectral surface albedos: Value-added datasets derived from
Terra MODIS land products. [EEE Transactions on Geoscience and Remote
Sensing, 43(1), 144—158.

Morisette, J. T., Privette, J. L., & Justice, C. O. (2002). A framework for
the validation of MODIS Land products. Remote Sensing of Environment, 83
(1-2), 77-96.

Myneni, R., Yang, W., T.B, Shabanov, N., & Knyazikhin, Y. (2005). Global
products of vegetation leaf area and fraction absorbed PAR from MODIS
sensors onboard NASA Terra and Aqua satellites. In S. Liang, J. Liu, X. Li, R.
Liu, & M. Schaepman (Eds.), Proceedings of the 9th International Symposium
on Physical Measurements and Signatures in Remote Sensing, Beijing, China,
Vol. 1. (pp. 200—202) Beijing (Oct. 17-19, 2005).

Running, S. W., & Gower, S. T. (1991). FOREST-BGC, a general model of forest
ecosystem processes for regional applications, II, dynamic carbon allocation
and nitrogen budgets. Tree Physiology, 9, 147—160.

Running, S. W., & Hunt, E. R. (1991). Generalization of a forest ecosystem
process model for other biomes. In J. R. Ehleringer & C.B. Field (Eds.),
Scaling Physiological Processes: Leaf to Globe (pp. 141—158). San Diego,
California: Academic.

Savitzky, A., & Golay, M. J. E. (1964). Smoothing and differentiation of data by
simplified least squares procedures. Analytical Chemistry, 36(8), 1627—1639.

Sellers, P. J., Tucker, C.J., Collatz, G. J., Los, S. O., Justice, C. O., Dazlich, D. A.,
et al. (1994). A global 1° by 1° NDVI data set for climate studies. Part 2: The
generation of global fields of terrestrial biophysical parameters from the
NDVL. International Journal of Remote Sensing, 15, 3519—-3545.

Shabanov, N. V., Kotchenova, S., Huang, D., Yang, W., Tan, B., Knyazikhin, Y.,
et al. (2005). Analysis and optimization of the MODIS leaf area index
algorithm retrievals over broadleaf forests. /EEE Transactions on Geoscience
and Remote Sensing, 43(8), 1855—1865.

Small, C. (2004). The Landsat ETM+ spectral mixing space. Remote Sensing of
Environment, 93(1-2), 1-17.

Viovy, N., Arion, O., & Belward, A. S. (1992). The best index slope extraction
(BISE): A method for reducing noise in NDVI time-series. International
Journal of Remote Sensing, 12, 1585—1590.

Wang, Y., Tian, Y., Zhang, Y., El-Saleous, N., Knyazikhin, Y., Vermote, E., et al.
(2001). Investigation of product accuracy as a function of input and model
uncertainties: Case study with SeaWiFS and MODIS LAI/FPAR algorithm.
Remote Sensing of Environment, 78(3), 296—311.

Yang, W., Huang, D., Tan, B., Stroeve, J. C., Shabanov, N. V., Knyazikhin, Y.,
et al. (2006). Analysis of leaf area index and fraction of PAR absorbed by
vegetation products from the Terra MODIS sensor: 2000-2005. [EEE
Transactions on Geoscience and Remote Sensing, 44(7), 1829—1841.

Zhang, X., Friedl, M. A., Schaaf, C. B., Strahler, A. H., Hodges, J., Gao, F., et al.
(2003). Monitoring vegetation phenology using MODIS. Remote Sensing of
Environment, 84(3), 471-475.



	Spatially and temporally continuous LAI data sets based on an integrated filtering method: Exam.....
	Introduction
	The MODIS LAI product

	Description of the temporal and spatial filter (TSF)
	Theoretical basis
	Calculation of the multi-year variation (background)
	The ECF and VCF–ECF methods

	Calculation of the observational value

	Results
	Spatially complete LAI products for North America
	LAI climatologies for North America
	Comparison with the SG filter
	Mean LAI for different latitude zones

	Comparison with other data sets
	Comparison with in situ measurements
	Comparison with ETM+ and field LAI
	Harvard forest site
	Beltsville Agricultural Research Center site

	Comparison with monthly composite data

	Conclusion
	Acknowledgements
	References


